YL1640 2线串口LED驱动专用电路

产品说明书

版本说明:

版本	发行时间	初始版本/改动内容
V01	2024/11/06	初始版本

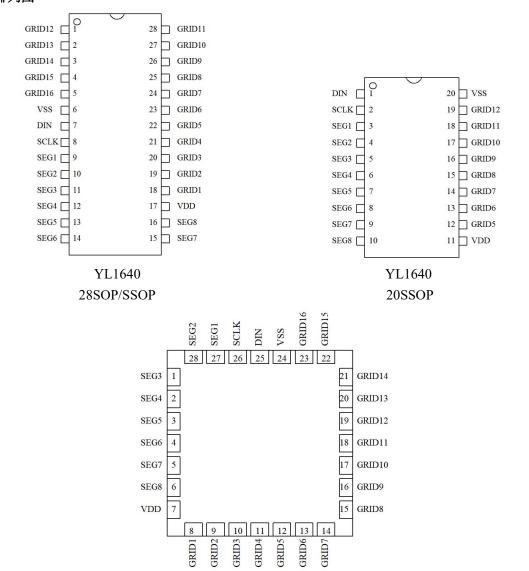
目录

1、	概述	3
2、	引脚排列图及引脚说明	3
	2.1、引脚排列图	3
	2.2、引脚说明	4
3、	电特性	5
	3.1、极限参数	5
	3.2、推荐使用条件	5
	3.3、电气特性	
	3.3.1 直流参数	5
	3.3.2 交流参数	
	3.3.3 时钟特性	
4、	温漂曲线图	
5、	接口说明	7
	5.1 指令数据传输格式	7
	5.2 写 SRAM 数据地址自动加 1 模式	
	5.3 写 SRAM 数据固定地址模式	
6、	数据指令	
	6.1 数据命令设置:	8
	6.2 地址命令设置	8
	6.3、显示控制	9
7、	显示周期	9
8,	典型应用线路与说明	10
9、	封装尺寸与外形图	12
	9.1、SSOP20(150mil)外形图与封装尺寸	12
	9.2、SSOP28(150mil)外形图与封装尺寸	13
	9.3、SOP28(300mil)外形图与封装尺寸	14
	9.3、DFN28(4*4)外形图与封装尺寸	15
庙	田权声明	16

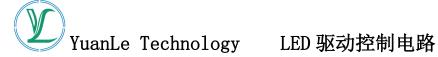
1、概述

YL1640 是一种 LED (发光二极管显示器)驱动控制专用电路,内部集成有MCU 数字接口、数据锁存器、LED 高压驱动等电路。本产品性能优良,质量可靠。主要应用于电子秤及小家电产品的显示屏驱动。其主要特点如下:

- 工作电压: 2.5~5.5V
- 采用功率 CMOS 工艺
- 辉度调节电路(占空比8级可调)
- 两线串行接口(CLK, DIN)
- 振荡方式: 内置 RC 振荡 (330KHz)


- 内置上电复位电路
- 内置自动消隐电路
- 显示模式(8段×16位),支持共阴数码管输出
- 封装形式: SSOP20、SOP/SSOP28、DFN28

应用领域:


LED 显示面板场合,例如微波炉,电磁炉,热水器,血压计等。

2、引脚排列图及引脚说明

2.1、引脚排列图

YL1640 DFN28(4*4)

2.2、引脚说明

引脚	引脚名称	符号	说明
1	输出(位)	GRID12	位输出,N 管开漏输出
2	输出(位)	GRID13	位输出,N 管开漏输出
3	输出(位)	GRID14	位输出,N 管开漏输出
4	输出(位)	GRID15	位输出,N 管开漏输出
5	输出(位)	GRID16	位输出,N 管开漏输出
6	逻辑地	VSS	接系统地
7	数据输入	DIN	串行数据输入,输入数据在 SCLK 的低电平变化,在 SCLK 的高电平 被传输
8	时钟输入	SCLK	在上升沿输入数据
9	输出(段)	SEG1	段输出,P 管开漏输出
10	输出(段)	SEG2	段输出,P 管开路输出
11	输出(段)	SEG3	段输出,P 管开路输出
12	输出(段)	SEG4	段输出,P 管开路输出
13	输出(段)	SEG5	段输出,P 管开路输出
14	输出(段)	SEG6	段输出,P 管开路输出
15	输出(段)	SEG7	段输出,P 管开路输出
16	输出(段)	SEG8	段输出,P 管开路输出
17	逻辑电源	VDD	5V±10%
18	输出(位)	GRID1	位输出,N 管开漏输出
19	输出(位)	GRID2	位输出,N 管开漏输出
20	输出(位)	GRID3	位输出,N 管开漏输出
21	输出(位)	GRID4	位输出,N 管开漏输出
22	输出(位)	GRID5	位输出,N 管开漏输出
23	输出(位)	GRID6	位输出,N 管开漏输出
24	输出(位)	GRID7	位输出,N 管开漏输出
25	输出(位)	GRID8	位输出,N 管开漏输出
26	输出(位)	GRID9	位输出,N 管开漏输出
27	输出(位)	GRID10	位输出,N 管开漏输出
28	输出(位)	GRID11	位输出,N 管开漏输出

3、电特性

3.1、极限参数

(除非另有规定, T_{amb}=25℃, Vss = 0V)

参数名称	符号	条 件	额 定 值	单 位
电源电压	V _{CC}		- 0.5 ~ +7.0	V
逻辑输入电压	VI1		-0.5~V _{DD} +0.5	V
LED Seg 驱动输出电流	I _{O1}		-50	mA
LED Grid 驱动输出电流	I_{O2}		+200	mA
功率损耗	P _D		400	mW
工作温度	Topt		-40~+85	$^{\circ}$
贮存温度	T_{stg}		-65~+150	$^{\circ}$
焊接温度	T_{L}	10 秒	250	$^{\circ}$
ESD 静电 (HBM)	_	_	≥±7000	V

3.2、推荐使用条件

 $(Ta = -40 \sim +85 \,^{\circ}\text{C}, V_{SS} = 0\text{V})$

参数名称	符号	最小	典型	最大	单 位
逻辑电源电压	VDD	2.5	5	5.5	V
高电平输入电压	VIH	0.7VDD	-	VDD	V
低电平输入电压	VIL	0	-	0.3VDD	V

3.3、电气特性

3.3.1直流参数

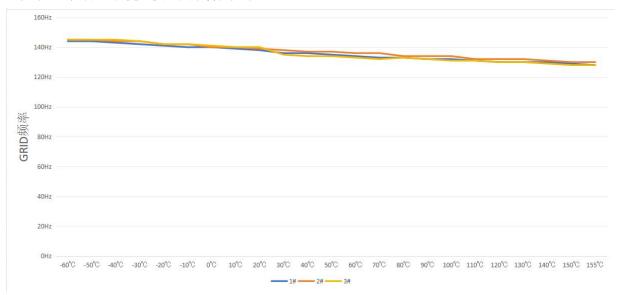
 $(T_a=-40\sim+85^{\circ}C, V_{DD}=4.5V\sim5.5 V, GND=0V)$

参数名称	符号	测试条件	最小	典 型	最大	单 位
高电平输出电流	Ioh1	SEG1~SEG8, Vo=vdd-2V	-20	-25	-40	mA
M & I WILL & WILL	Ioh2	SEG1~SEG8, Vo=vdd-3V	-20	-30	-50	mA
低电平输出电流	IOL1	GRID1~GRID16 Vo=0.3V	80	140	-	mA
低电平输出电流	Idout	VO=0.4V, dout	4	-	_	mA
高电平输出电流容许 量	Itolsg	VO=VDD-3V , SEG1~SEG8,	-	-	5	%
输入电流	II	VI = VDD / VSS	-	1	±1	μΑ
高电平输入电压	VIH	CLK, DIN	0.7VDD	1		V
低电平输入电压	VIL	CLK, DIN	-	-	0.3VDD	V
滞后电压	VH	CLK, DIN	-	0.35	-	V
动态电流损耗	IDDdyn	无负载,显示关	-	-	5	Ma

3.3.2交流参数

(除非另有规定, T_{amb}=-40~+85℃,V_{DD}=4.5~5.5V)

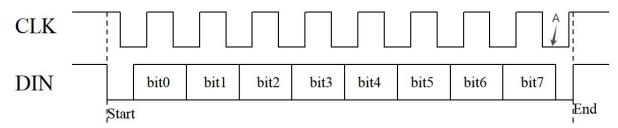
参数名称	符号	测试条件	最小	典型	最大	单位
振荡频率	Fosc		-	330	-	KHz
传输延迟时间	tPLZ	CLK→DIO CL=15pF,RL=10K Ω	-	-	300	ns
	tPZL		-	-	100	
上升时间	TTZH 1	GRID1∼GRID16 CL=300pF	-	-	2	μs
	TTZH 2	SEG1∼SEG8 CL=300pF	-	-	0.5	μs
下降时间 TTHZ		CL=300pF , Segn , Gridn	-	-	120	μs
最大时钟频率	Fmax	占空比 50%	1	-	-	MHZ
输入电容	CI	-	-	-	15	pF


3.3.3时钟特性

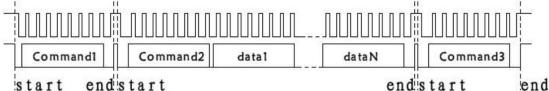
(除非另有规定, T_{amb}=-40~+85℃,V_{DD}=4.5~5.5V)

参数名称	符号	测试条件	最小	典型	最大	单位
时钟脉冲宽度	PWCLK	-	400	-	-	ns
选通脉冲宽度	PWSTB	-	1	-	-	μs
数据建立时间	tSETUP	-	100	-	-	ns
数据保持时间	tHOLD	-	100	-	-	ns
等待时间	tWAIT	CLK↑→CLK↓	1	-	-	μs

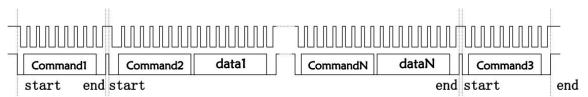
4、温漂曲线图


此系列 LED 驱动 IC 在宽温度范围下特性如下:

5、接口说明


微处理器的数据通过两线总线接口和 YL1640 通信,在输入数据时当 CLK 是高电平时,DIN 上的信号必须保持不变;只有 CLK 上的时钟信号为低电平时,DIN 上的信号才能改变。数据的输入总是低位在前,高位在后传输.数据输入的开始条件是 CLK 为高电平时,DIN 由高变低;结束条件是 CLK 为高时,DIN 由低电平变为高电平。

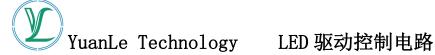
5.1指令数据传输格式


Note: 由于 "END"信号是低到高,若bit7是高电平,则bit7到 "END"之间会有电平变化,而CLK只有在低电平的时候才允许DIN改变,因此在"END"置0之前需要把CLK先置0,如上图A点。

5.2写SRAM数据地址自动加1模式

Command1:设置数据
Command2:设置地址
Data1~N:传输显示数据
Command3: 控制显示

5.3写SRAM数据固定地址模式


Command1:设置数据 Command2:设置地址 Data1~N:传输显示数据 Command3: 控制显示

6、数据指令

指令用来设置显示模式和 LED 驱动器的状态。

在指令 START 有效后由 DIN 输入的第一个字节作为一条指令。经过译码,取最高 B7、B6 两位比特位以区别不同的指令。

В7	В6	指令

0	1	数据命令设置
1	0	显示控制命令设置
1	1	地址命令设置

如果在指令或数据传输时出现END有效,串行通讯被初始化,并且正在传送的指令或数据无效(之前传送的 指令或数据保持有效)

6.1 数据命令设置:

	В7	В6	В5	B4	В3	B2	B1	В0	说 明
	0	1	无关项, 填 0		_	0			地址自加模式
	0	1			_	1	无关项,		固定地址模式
	0	1			0 _ 填0			普通模式	
Ī	0	1			1	_			测试模式(内部使用)

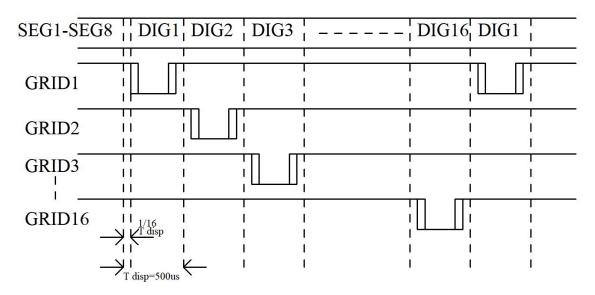
6.2 地址命令设置

В7	В6	В5	B4	В3	B2	B1	В0	显示地址
1	1			0	0	0	0	ООН
1	1			0	0	0	1	01H
1	1			0	0	1	0	02Н
1	1			0	0	1	1	03Н
1	1			0	1	0	0	04H
1	1			0	1	0	1	05Н
1	1			0	1	1	0	06Н
1	1			0	1	1	1	07Н
1	1		关项	1	0	0	0	08H
1	1	复	3 0	1	0	0	1	09Н
1	1			1	0	1	0	OAH
1	1			1	0	1	1	OBH
1	1				1	0	0	ОСН
1	1			1	1	0	1	ODH
1	1			1	1	1	0	OEH
1	1			1	1	1	1	OFH

Note: 上电后为避免乱显,请先清显示 RAM (对所有显示 RAM 写 0),再开显示。

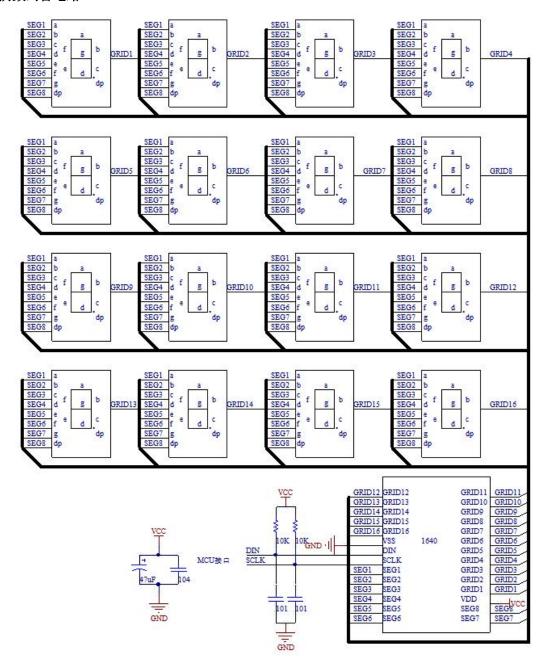
显示数据与芯片管脚以及显示地址之间的对应关系如下表所示:

SEG1	SEG2	SEG3	SEG4	SEG5	SEG6	SEG7	SEG8	
ВО	B1	B2	В3	B4	В5	В6	В7	
ООН								GRID1
	01H							
02Н							GRID3	
03Н							GRID4	


GRID5
GRID6
GRID7
GRID8
GRID9
GRID10
GRID11
GRID12
GRID13
GRID14
GRID15
GRID16

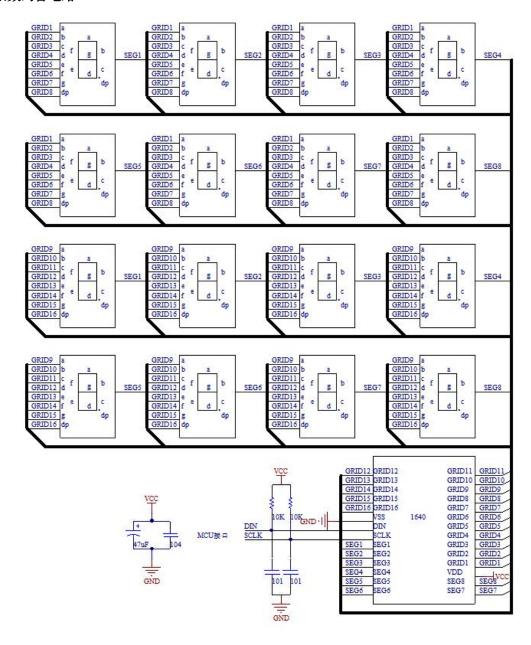
6.3、显示控制

MSB	I CD
WOD	LSB


В7	В6	В5	B4	В3	B2	B1	ВО	功能	说 明
1	0			1	0	0	0		设置脉冲宽度为 1/16
1	0			1	0	0	1		设置脉冲宽度为 2/16
1	0			1	0	1	0		设置脉冲宽度为 4/16
1	0			1	0	1	1		设置脉冲宽度为 10/16
1	0	T: 2	公元	1	1	0	0	显示亮度设置	设置脉冲宽度为11/16
1	0		关项 60	1	1	0	1		设置脉冲宽度为 12/16
1	0] ->	10	1	1	1	0		设置脉冲宽度为 13/16
1	0			1	1	1	1		设置脉冲宽度为 14/16
1	0			0	_		_	显示开关设置	显示关
1	0			1	_	_	_	业小月天以且	显示开

7、显示周期

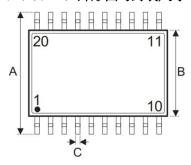
8、典型应用线路与说明

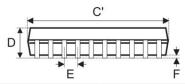

8.1 共阴数码管电路

注:

- 1、VDD与GND之间的滤波(104、47uF)电容应靠近驱动芯片,且47uF建议使用电解电容以加强滤波效果。
- 2、为了提高电路的抗干扰能力,通讯端口建议按照上图连接,具体的参数值可根据实际需要调整。

8.2 共阳数码管电路

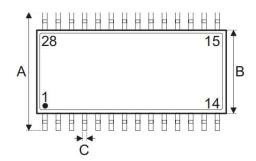


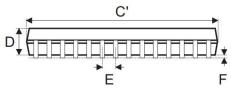

注:

- 1、VDD与GND之间的滤波(104、47uF)电容应靠近驱动芯片,且47uF建议使用电解电容以加强滤波效果。
- 2、为了提高电路的抗干扰能力,通讯端口建议按照上图连接,具体的参数值可根据实际需要调整。

9、封装尺寸与外形图

9.1、SSOP20(150mil)外形图与封装尺寸

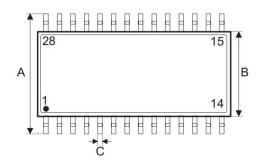


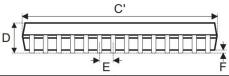


符号	尺寸(单位: inch)				
	最小值	典型值	最大值		
A	_	0.236 BSC	_		
В	_	0.154 BSC	_		
С	0.008	_	0.012		
С'	_	0.341 BSC	_		
D	_		0.069		
Е	_	0.025 BSC	_		
F	0.004	_	0.010		
G	0.016	_	0.050		
Н	0.004		0.010		
α	0°	_	8°		

符号	尺寸(单位: mm)				
何 与	最小值	典型值	最大值		
A	_	6.00 BSC	_		
В	_	3.90 BSC	_		
С	0. 20		0.30		
С'	_	8.66 BSC	_		
D	_	_	1.75		
E	_	0.635 BSC	_		
F	0. 10	_	0.25		
G	0.40	_	1. 27		
Н	0. 10	_	0.25		
α	0°	_	8°		

9.2、SSOP28(150mil)外形图与封装尺寸

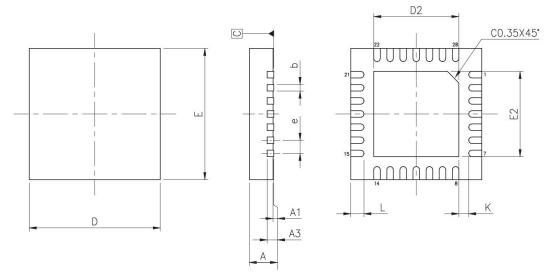




	尺寸(单位: inch)				
符号	 最小值	典型值	最大值		
A	_	0.236 BSC	_		
В	_	0.154 BSC	_		
С	0.008	_	0.012		
C'	_	0.390 BSC	_		
D	_	_	0.069		
Е	_	0.025 BSC	_		
F	0.004	_	0.010		
G	0.016	_	0.050		
Н	0.004	_	0.010		
α	0°	_	8°		

符号	尺寸(单位: mm)				
打 与	最小值	典型值	最大值		
A	_	6.00 BSC			
В	_	3.90 BSC			
С	0. 20	_	0.30		
С'	_	9.90 BSC			
D	_	_	1.75		
Е		0.635 BSC	_		
F	0. 10	_	0.25		
G	0.40	_	1. 27		
Н	0. 10	_	0. 25		
α	0°	_	8°		

9.3、SOP28(300mil)外形图与封装尺寸



符号	尺寸(单位: inch)				
175	最小值	典型值	最大值		
A	_	0.406 BSC	_		
В	_	0. 295 BSC	_		
С	0.012	_	0.020		
C'	_	0.705 BSC	_		
D	_	_	0.104		
Е	_	0.050 BSC	_		
F	0.004	_	0.012		
G	0.016	_	0.050		
Н	0.008	_	0.013		
α	0°	_	8°		

符号	尺寸(单位: mm)				
11) 5	最小值	典型值	最大值		
A	_	10.30 BSC			
В	_	7.5 BSC			
С	0. 31	_	0. 51		
C'	_	17.9 BSC	_		
D	_	_	2.65		
Е	_	1.27 BSC			
F	0. 10	_	0.30		
G	0.40	_	1.27		
Н	0. 20	_	0.33		
α	0°	_	8°		

9.3、DFN28 (4*4) 外形图与封装尺寸

<u> </u>	尺寸(单位: inch)				
符号	最小值	典型值	最大值		
A	0.028	0.030	0.031		
A1	0.000	0.001	0.002		
A3	_	0.008 BSC			
b	0.006	0.008	0.010		
D	_	0.157 BSC	_		
Е	_	0.157 BSC	_		
е	_	0.016 BSC			
D2	0.100	0.102	0.104		
E2	0.100	0.102	0.104		
L	0.012	0.016	0.020		

符号	尺寸(单位: mm)				
1寸 与	最小值	典型值	最大值		
A	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
A3	_	0. 203 BSC			
b	0. 15	0.20	0. 25		
D	_	4.00 BSC	_		
Е	_	4.00 BSC	_		
е	_	0.40 BSC			
D2	2. 55	2.60	2.65		
E2	2. 55	2.60	2.65		
L	0.030	0.40	0.50		

使用权声明

本企业对于产品、文件以及服务保有一切变更、修正、修改、改善和终止的权利。 针对上述的权利,客户在进行产品购买前,建议与本企业业务代表联系以取得最新 的产品信息。

本企业的产品不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或 生命威胁甚至死亡,本企业将不负任何损害赔偿责任。

此份文件上所有的文字内容、图片、及商标为本企业所属之智慧财产。未经本企业合法授权,任何个人和组织不得擅自使用、修改、重制、公开、改作、散布、发行、公开发表等损害本企业合法权益。对于相关侵权行为,本企业将立即全面启动法律程序,追究法律责任。