
YL1650 2 线串口共阴极 8 段 4 位 7*4 位按键功能 LED 驱动控制专用电路

产品说明书

版本说明:

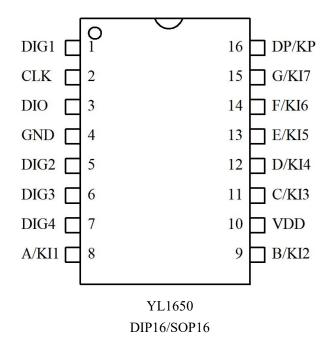
版本	发行时间	初始版本/改动内容
V01	2025/03/06	初始版本

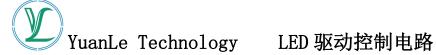
目录

1、概 述	3
2、引脚排列图及引脚说明	2
2.1、引脚排列图	2
2.2、引脚说明	
3、电特性	
3.1、极限参数(Ta=25℃)	
3.2、电气特性(Ta=-40~+85℃)	
4、温漂曲线图	
5、功能介绍	
5.1、显示寄存器地址	
5.2、控制指令	<i>6</i>
5.2.1、系统指令	
5.2.2、显示指令	7
5.3、键扫描和键扫数据寄存器	
5.4、通信端口说明	
6、典型应用线路图	10
7、封装尺寸与外形图	
7.1、DIP16 外形图与封装尺寸	11
7.2、SOP16 外形图与封装尺寸	12
使田权 声明	13

1、概 述

YL1650 是一种带键盘扫描电路接口的 LED 驱动控制专用电路。内部集成有 MCU 输入输出控制数字接口、数据锁存器、LED 驱动、键盘扫描、辉度调节等电路。本芯片性能稳定、质量可靠、抗干扰能力强,可适应于 24 小时长期连续工作的应用场合。其主要特点如下:

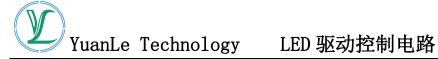

- 显示模式: 8段×4位
- 段驱动电流不小于 25mA, 字驱动电流不小于 150mA.
- 提供8级亮度控制
- 键盘扫描: 7×4bit, 支持 4 个组合按键
- 高速两线式串行接口
- 内置时钟振荡电路
- 内置上电复位电路
- 支持 2.5V-5.5V 电源电压
- 封装形式: DIP16/SOP16


应用领域:

LED 显示面板场合,例如微波炉,电磁炉,热水器等家电产品。

2、引脚排列图及引脚说明

2.1、引脚排列图


2.2、引脚说明

引脚	符号	引脚名称	功 能
1	DIG1	位/键扫描输出	LED 位驱动输出,低电平有效,及作为键盘扫描输出,高电平有效。
2	CLK	时钟输入	2线串行接口的数据时钟输入,内置上拉电阻。
3	DIO	数据输入/输出	2 线串行接口的数据输入输出,内置上拉电阻。
4	GND	接地端	接地
5	DIG2	位/键扫描输出	LED 位驱动输出,低电平有效,及作为键盘扫描输出,高电平有效。
6	DIG3	位/键扫描输出	LED 位驱动输出,低电平有效,及作为键盘扫描输出,高电平有效。
7	DIG4	位/键扫描输出	LED 位驱动输出,低电平有效,及作为键盘扫描输出,高电平有效。
8	A/KI1	段驱动输出/键扫描输入	LED 段驱动输出,高电平有效,也用作键扫描输入,高电平有效,内置下拉。
9	B/KI2	段驱动输出/键扫描输入	LED 段驱动输出,高电平有效,也用作键扫描输入,高电平有效,内置下拉。
10	VDD	电源端	电容尽量靠近 YL1650 电源脚
11	C/KI3	段驱动输出/键扫描输入	LED 段驱动输出,高电平有效,也用作键扫描输入,高电平有效,内置下拉。
12	D/KI4	段驱动输出/键扫描输入	LED 段驱动输出,高电平有效,也用作键扫描输入,高电平有效,内置下拉。
13	E/KI5	段驱动输出/键扫描输入	LED 段驱动输出,高电平有效,也用作键扫描输入,高电平有效,内置下拉。
14	F/KI6	段驱动输出/键扫描输入	LED 段驱动输出,高电平有效,也用作键扫描输入,高电平有效,内置下拉。
15	G/KI7	段驱动输出/键扫描输入	LED 段驱动输出,高电平有效,也用作键扫描输入,高电平有效,内置下拉。
16	DP/KP	段/位输出	LED 段输出,也用作键盘标志输出。

3、电特性

3.1、极限参数(Ta=25°C)

参数名称	符号	条	件	额 定 值	单 位				
电源电压	VDD	_	_	-0.5∼+5.5	V				
输入电压	V_{I1}	_	_	-0.5~VDD+0.5	V				
LED 段驱动输出电流	I _{O1}	_	_	0~30	mA				
LED 位驱动输出电流	I_{O2}	_		_		_		0~150	mA
所有管脚驱动电流总和	Io	_	_	0~150	mA				
工作环境温度	T _{amb}	_	_	-40~+105	°C				
储存温度	T_{stg}	_	_	-55~+125	°C				
阳松阳庇			DIP	245	°C				
焊接温度	$T_{\rm L}$	10 秒	SOP	260	°C				
ESD 静电 (HBM)	_	_		_		±7.5K	V		

3.2、电气特性(T_a=-40~+85℃)

	符号		规范值		单
多 奴 石 桥	付与	最小	典型	最大	位
	直流参数				
电源电压	VDD	2.5	5	5.5	V
静态电流(CLK,DIO,KP 为高电平)	I_{Cs}	_	300	600	uA
睡眠电流(CLK,DIO,KP 为高电平)	I_{Cslp}	_	12	40	uA
CLK 和 DIO 管脚低电平输入电压	V _{IL}	-0.5	_	0.8	V
CLK 和 DIO 管脚高电平输入电压	V _{IH}	2.0	_	VDD+0.5	V
KI 管脚低电平输入电压	V _{ILki}	-0.5	_	0.5	V
KI 管脚高电平输入电压	V _{IHki}	1.8	_	VDD+0.5	V
DIG 管脚低电平输出电压(-200mA)	Voldig	_	_	1.2	V
DIG 管脚低电平输出电压(-100mA)	V _{OLdig}	_	_	0.8	V
DIG 管脚高电平输出电压(50mA)	V _{OHdig}	4.5		_	V
KI 管脚低电平输出电压(-20mA)	V _{OLki}	_	_	0.5	V
KI 管脚高电平输出电压(20mA)	V _{OHki}	4.5	_	_	V
其余管脚低电平输出电压(-4mA)	V _{OL}	_	_	0.5	V
其余管脚高电平输出电压(4mA)	V _{OH}	4.5		_	V
KI 管脚输入下拉电流	I _{DN1}	-200	-400	-600	uA
CLK 管脚输入上拉电流	I _{UP1}	290	420	550	uA
DIO 管脚输入上拉电流	I _{UP2}	290	420	550	uA
上电复位的默认电压门限	V_R	2.0	2.2	2.4	V
	交流参数				
● 内部时序参数					
电源上电检测产生的复位时间	T_{PR}	10	25	60	ms
显示扫描周期	T _P	2	4	8	ms
按键响应时间	T _{KS}	_	13	_	ms
键盘扫描间隔	T_{K}	_	75	_	Hz
● 接口时序参数				•	
DIO 下降沿启动信号的建立时间	T _{SSTA}	100	_	_	ns
DIO 下降沿启动信号的保持时间	T _{HSTA}	100	_	_	ns
DIO 上升沿停止信号的建立时间	T _{SSTO}	100	_	_	ns
DIO 上升沿停止信号的保持时间	T _{HSTO}	100	_	_	ns
CLK 时钟信号的低电平宽度	T _{CLOW}	100		_	ns
CLK 时钟信号的高电平宽度	T _{CHIG}	100	_	_	ns
DIO 输入数据对 CLK 上升沿的建立时间	T_{SDA}	30	_	_	ns
DIO 输入数据对 CLK 上升沿的保持时间	T_{HDA}	10	_	_	ns
DIO 输出数据有效对 CLK 下降沿的延时	T _{AA}	2	_	30	ns
DIO 输出数据无效对 CLK 下降沿的延时	T_{DH}	2	_	40	ns
平均数据传输速率	Rate	_	_	4M	bps

4、温漂曲线图

此 LED 驱动 IC 在宽温度范围下特性如下:

5、功能介绍

5.1、显示寄存器地址

写 LED 显示数据时,按照显示地址从高位到低位、数据字节从高位到低位的顺序操作。地址分 配如下:

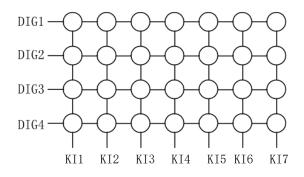
A	В	С	D	E	F	G	DP			
В0	B1	B2	В3	B4	B5	В6	B7			
	68H									
			6.	AH				DIG2		
	6CH									
			6	ЕН				DIG4		

注意:在上电完之后,必须先对RAM 进行数据写入,然后再开显示。

5.2、控制指令

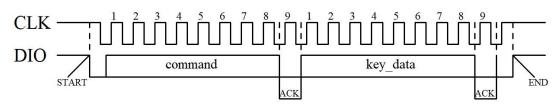
在发送显示指令前需先输入系统指令,即输入字节1为系统指令,输入字节2为显示指令。

5.2.1、系统指令


指令名称				说明					
18 4 -1140	B7	B7 B6 B5 B4 B3 B2 B1 B0							60.51
系统指令	0	1	0	0	1	0	0	0	设置系统参数指令

5.2.2、显示指令

指令名称		指令							
18 4 711/1/1	B7	B6 B5 B4			В3	B2	B1	В0	说明
显示开/关	X	X	X	X	X	X	X	D	D=1,显示开 D=0,显示关
工作/睡眠模式	X	X	X	X	X	W	X	X	W=1, 睡眠模式 W=0, 工作模式
段显示设置	X	X	X	X	S	X	X	X	S=1,7段显示 S=0,8段显示
亮度设置	X		BR[2:0]		X	X	X	X	BR[2:0]= 000:8 级亮度 001:1 级亮度 010:2 级亮度 011:3 级亮度 100:4 级亮度 101:5 级亮度 111:7 级亮度


5.3、键扫描和键扫数据寄存器

键扫矩阵

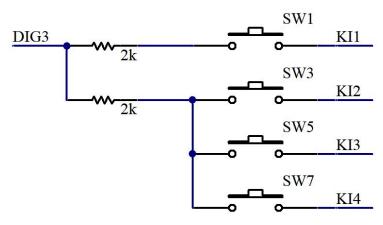
读键数据

该电路键值读取格式为一个9位时钟周期的命令加一个9位时钟的数据,命令的第9位为ACK=0,数据的第9位 为ACK=1,如下图所示。

command: 读按键数据指令

key_data: 读按键数据(1 个字节)

指令名称				指	\			
18 4 7740	B7	В6	B5	B4	В3	B2	B1	В0
读按键数据指令	0	1	0	0	1	X	X	1


通过逻辑编码实现不同的按键读出,如下表为按键按下的输出值:

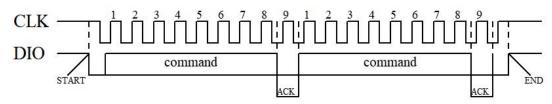
	DIG1	DIG2	DIG3	DIG4
NO KEY		00 101	110:2E	
KI1	01_000_100	01_000_101	01_000_110	01_000_111
KI2	01_001_100	01_001_101	01_001_110	01_001_111
KI3	01_010_100	01_010_101	01_010_110	01_010_111
KI4	01_011_100	01_011_101	01_011_110	01_011_111
KI5	01_100_100	01_100_101	01_100_110	01_100_111
KI6	01_101_100	01_101_101	01_101_110	01_101_111
KI7	01_110_100	01_110_101	01_110_110	01_110_111
KI1+KI2	01_111_100	01_111_101	01_111_110	01_111_111

按键至少持续两个键扫周期以上,才被认可。

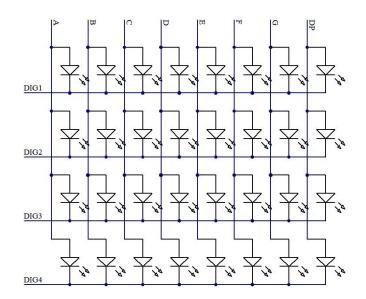
YL1650 支持 KI1 和 KI2 针对同一个 DIGX 引脚的组合键,组合键的优先级最优先的,除此之外,如果多个键同时按下,那么按键代码较小的按键优先。例如同时连接 DIG3/KI1 和 DIG3/KI2 的两个键,可以作为组合键。在组合键应用中,应对具有组合键功能的 KI1 及 KI2 相互间进行阻隔处理。如下图:

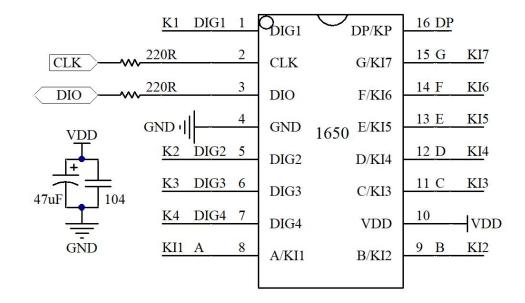
SW1与SW3使用组合按键功能

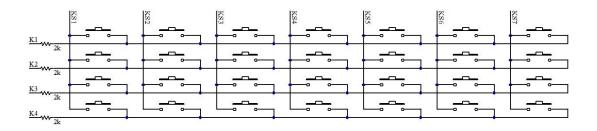
下表为按键松开的输出值:


	DIG1	DIG2	DIG3	DIG4
NO KEY		00 101	110:2E	
KI1	00_000_100	00_000_101	00_000_110	00_000_111
KI2	00_001_100	00_001_101	00_001_110	00_001_111
KI3	00_010_100	00_010_101	00_010_110	00_010_111
KI4	00_011_100	00_011_101	00_011_110	00_011_111
KI5	00_100_100	00_100_101	00_100_110	00_100_111
KI6	00_101_100	00_101_101	00_101_110	00_101_111
KI7	00_110_100	00_110_101	00_110_110	00_110_111
KI1+KI2	00_111_100	00_111_101	00_111_110	00_111_111

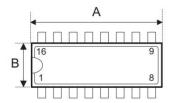
5.4、通信端口说明

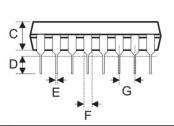

本电路通信端口采用了类似于 I²C 的通信方式, 微处理器的数据通过两线总线接口和电路通信, 在输入数据时, 电路在 CLK 的上升沿锁存数据, 故当 CLK 是高电平时, DIO 上的信号必须保持不变, 只有 CLK 上的时钟信号为低电平时, DIO 上的信号才能改变, 且 DIO 不能在 CLK 的下降沿改变。数据输入的开始条件是当 CLK 为高电平时, DIO 由高变低; 结束条件是当 CLK 为高时, DIO 由低电平变为高电平。


本电路的数据传输带有应答信号 ACK,在传输数据的过程中,在时钟线的第九个时钟芯片内部会产生一个应答信号 ACK 将 DIO 管脚拉低。无论是命令写入或者是数据写入读出时,在一个 8 位字节后的第 9 位都是 ACK 信号输出。


指令传输为 16 位格式,指令数据传输过程如下图所示。数据和命令在传输时,先传送高位,再传送低位,CLK 上升沿锁存数据,DIO 不能在 CLK 为高电平时变化,也不要在 CLK 下降沿变化,而是在 CLK 为低电平时改变。

6、典型应用线路图

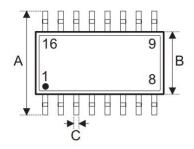


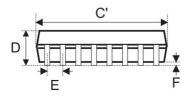

注:

- 1、VDD 与 GND 之间的滤波电容(104 和 47uF 电解)应靠近 YL1650。
- 2、为了提供电路的抗干扰能力,通讯端口建议按照上图连接。
- 3、按键矩阵中要在 DIG1~DIG4 之间串接 2K 电阻。

7、封装尺寸与外形图

7.1、DIP16外形图与封装尺寸





符号		尺寸 (单位: inch)						
11) 5	最小值	典型值	最大值					
A	0.780	_	0.880					
В	0. 240	_	0. 280					
С	0.115	_	0. 195					
D	0.115	_	0.150					
Е	0.014	_	0.022					
F	0.045	_	0.070					
G	_	0.100 BSC	_					
Н	0.300	_	0. 325					
I		0.430 BSC	_					

符号	尺寸(单位: mm)			
	最小值	典型值	最大值	
A	19.81	_	22. 35	
В	6. 10	_	7. 11	
С	2. 92	_	4.95	
D	2. 92	_	3.81	
Е	0. 36	_	0.56	
F	1.14	_	1.78	
G	_	2. 54 BSC		
Н	7. 62	_	8. 26	
I	_	10. 92 BSC	_	

7.2、SOP16 外形图与封装尺寸

符号	尺寸(单位: inch)		
	最小值	典型值	最大值
A	_	0.236 BSC	_
В	_	0.154 BSC	_
С	0.012	_	0.020
C'	_	0.390 BSC	_
D	_	_	0.069
E	_	0.050 BSC	_
F	0.004		0.010
G	0.016	_	0.050
Н	0.004	_	0.010
α	0°	<u> </u>	8°

符号	尺寸(单位: mm)			
	最小值	典型值	最大值	
A		6.00 BSC	_	
В		3.90 BSC		
С	0. 31		0. 51	
C'		9.90 BSC	_	
D	_		1.75	
Е		1.27 BSC	_	
F	0. 10		0.25	
G	0.40		1. 27	
Н	0.10	<u> </u>	0. 25	
α	0°	_	8°	

使用权声明

本企业对于产品、文件以及服务保有一切变更、修正、修改、改善和终止的权利。 针对上述的权利,客户在进行产品购买前,建议与本企业业务代表联系以取得最新 的产品信息。

本企业的产品,不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或生命威胁甚至死亡,本企业将不负任何损害赔偿责任。

此份文件上所有的文字内容、图片、及商标为本企业所属之智慧财产。未经本企业合法授权,任何个人和组织不得擅自使用、修改、重制、公开、改作、散布、发行、公开发表等损害本企业合法权益。对于相关侵权行为,本企业将立即全面启动法律程序,追究法律责任。